« Previous : 1 : 2 : 3 : 4 : Next »

Power with Simplicity

Sequencher는 DNA 서열 데이터를 빠르게 분석하여 결과를 제공하는 소프트웨어입니다. 특히, sanger sequencing 데이터로부터 assembly 후 variation 정보를 찾아주는데 포커싱 되어 있어 특정 영역의 SNP 분석에 굉장히 유용하게 평가되고 있습니다. 최근 5버전대로 업그레이드가 되면서 NGS 데이터까지 분석이 가능하도록 기능이 확장되었고, 커맨드라인으로만 분석 가능했던 퍼블릭 툴들을 초보자들도 사용하기 쉽도록 GUI를 제공하여 편의성을 더해주었습니다.



그럼 NGS 데이터를 이용하여 실제적으로 어떤 분석이 가능한지 살펴볼까요?


Next-Gen Sequencing

[Reference assembly]

Sequencher에서는 NGS 데이터를 이용하여 reference assembly 시 이용하는 3개의 큰 알고리즘(Maq, GSNAP, BWA-MEM)이 있습니다. Maq이나 GSNAP을 통해 assemgbly 분석을 진행하면 SNP 분석도 함께 가능하며, 그 결과 값은 Tablet이나 Maqview를 이용하여 확인할 수 있습니다. 커맨드라인으로 제공하던 BWA-MEM도 GUI를 통해 다양한 옵션값을 손쉽게 설정할 수 있습니다. GSNAP이나 BWA-MEM로부터 얻은 VCF 포맷의 variant 정보는 SAMtools를 이용하여 분석할 수 있습니다.





[De novo assembly]

Reference 정보가 없는 de novo assembly의 경우에는 Velvet 알고리즘을 지원하고 있습니다. Velvet 또한 GUI를 제공함으로써, Tablet으로 결과값을 확인할 수 있고, 다양한 옵션값을 쉽게 설정할 수 있습니다.




[RNA-seq]

최신버전에서는 Differential Gene Expression(차등유전자발현) 연구를 위해 가장 많이 이용되는 RNA-seq 툴 중 하나인 Cufflinks를 플러그인으로 사용할 수 있습니다. Cufflinks 는 SAM 파일로부터 align된 reads를 가지고 GTF annotation 파일을 이용해 다시 align 하며, 다른 isoform과 transcript를 찾아줍니다. 이후 Cuffmerge를 통해 Cufflinks에서 나온 두 개의 transcript 파일을 하나의 transcript consensus 파일로 만들어 줍니다. 이 파일은 차등유전자발현 분석을 하는 Cuffdiff에 사용됩니다. Sequencher는 Cuffdiff에서 나오는 최종파일들(volcano plot, scatter plot, bar chart)을 다루며 발현 레벨에서 차이점을 그래픽으로 보여줍니다.







Connections
[BLAST & primer-BLAST]
Sequencher Connections는 Sequencher의 통합 웹 확장 툴이며, 이를 이용하여 2개 이상의 분석들을 동시에 진행할 수 있습니다. 다중 BLAST를 진행할 수 있어, 각 서열의 분석 결과를 실시간으로 빠르게 얻을 수 있습니다. 같은 서열로 다른 파라미터 조건을 주어 BLAST가 가능하며, 동시에 Local BLAST 까지도 수행할 수 있습니다. 또한 primer design을 위한 primer-BLAST를 할 수 있고, 해당 서열의 특정 영역을 확인 후 Sequencher Project에 예측된 primer를 저장할 수 있습니다. BLAST 검색 결과를 Web view 탭을 통해 뷰어할 수 있고, 이는 36시간 내에 다시 불러올 수 있으며, 그 이후로는 접근이 어렵습니다.



[MUSCLE alignment]
만일 여러 개의 서열로 그룹 분석을 하고 있다면, 다중서열정렬 알고리즘 중 가장 빠른 MUSCLE을 가지고 alignment를 할 수 있습니다. Sequencher Connections에서는 MUSCLE alignment를 다양한 옵션값으로 할 수 있고, alignment 이 후 phylogenetic tree도 생성할 수 있어 서열간의 유연관계도 확인할 수 있습니다.



이렇게 Sequencher에서는 NGS 분석까지 가능하도록 툴들이 확장되고 있습니다. 특히나 커맨드라인의 툴들을 사용하기 어려운 일반 생물학자들도 쉬운 인터페이스를 가진 Sequencher를 이용하여 NGS assembly를 진행할 수 있습니다. 그럼 Sequencher를 통해 NGS의 다양한 분석을 진행해 보세요.


작성자 : Codes실 Consulting팀
송하나 주임 컨설턴트

Posted by 人Co

2016/09/07 13:21 2016/09/07 13:21
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/220

Inova Genomes : Sequenced Whole Genome Data

최근 QIAGEN Bioinformatics에서는 다양한 인종 및 질병/환자/가계 정보들이 포함된 Whole Genome Database를 런칭하였습니다. 이는 Inova Translational Medicine Institute 라는 의학연구소에서 병원과 함께 환자들의 medical history 및 genome sequence를 수집하였으며 이러한 데이터들이 기존의 질병 유전체 연구 또는 임상연구의 한계를 극복해줄 것이라 생각되어집니다.

Inova Translational Medicine Institute
Inova Translational Medicine Institute(ITMI)는 비영리 연구기관으로 다양한 분야의 연구자들이 유전체와 임상적 데이터를 사용 할 수 있도록 하는 것을 목표로 개인의 유전체와 임상 정보를 이용하여 맞춤의료를 위한 혁신적인 방법 개발에 힘쓰고 있습니다. ITMI는 2011년 2월 1일에 설립되어 clinical, bioinformatics, laboratory 세 분야로 나누어 100명의 과학자와 임상의사, 간호사, 유전자 카운슬러, 실험실 기술자들이 배치되어 있습니다.

Inova Genomes
ITMI에서 선보인 Inova Genomes는 다양한 인종 및 다양성을 가지는 human whole genome 시퀀싱 결과와 개개인의 진료 기록 정보(진료기록 정보 외에는 모두 기밀)가 함께 수집된 데이터베이스이며 약 2,100건의 가계 정보 및 약 7,000명의 whole genome sequence를 가지고 있으며 매 년 2,500명 정도의 데이터들이 추가되고 있습니다. 환자의 식별은 불가능하지만 각 정보가 Electronic Health Record와 연결이 되어있으며 증상에 대한 문진데이터, demographics, 처방이나 가계에 대한 정보들도 포함되어 있습니다. 또한 환자와 환자 가족들의 동의하에 등록이 되어 있고 시간이 지남에 따라 동일 환자의 데이터 업데이트가 가능합니다. 또한 100개 이상의 국가에서 다양한 가족의 정보 및 모든 주요 기관계의 다양한 phenotype 데이터를 보유하고 있습니다. 뿐만 아니라 RNA-seq, miRNA이나 methylation 데이터 같은 실험데이터들도 포함하여 유전체 레벨 외의 분석을 위한 데이터셋으로도 활용이 가능하며, 양질의 pre-annotated, pre-computed 실험적 데이터를 제공합니다.


표 1. Study별 Inova Genomes 데이터 통계(2015년 7월 30일 기준)



표 2. 질병/나라별 Inova Genomes 데이터 통계


Data-set

전체 데이터의 30%는 Complete Genomics 데이터 셋(coverage=60X)이며, 나머지 70% 데이터는 Illumina 데이터 셋(coverage=40X)으로 구성되어 있습니다. 그 중 Trio 데이터셋 62개, quartet 데이터 2개는 Complete Genomics나 Illumina 두 개의 플랫폼에서 모두 진행하였습니다. 아래 그림1 에서 보시면 320만개의 SNP가 공통적으로 발견이 되어 데이터의 높은 신뢰성을 보여줍니다.



그림 1. Inova Genomes SNP 데이터 퀄리티


Data-field
해당 데이터베이스 내에는 생 후 1000일 간의 종적연구를 위해 아래와 같은 다양한 데이터필드도 존재합니다.

- Demographics : age, gender, ethnic background
- Personal & family health history : family history cancer/diabetes/cardiac types
- Treatment/pharmaceutical records : drug name, dose, frequency
- Laboratory & diagnostic test results : glucose level, CBCs
- Clinical data : BMI, height
- Clinical encounter : Admission to NICU
- Etc.

지금까지 Inova Genomes의 특징에 대해서 알아보았습니다. Inova Genomes과 다른 데이터베이스를 비교해보면 먼저, Personal Genomes Project는 300명 미만의 genome 정보를 가지고 있지만 Inova Genomes는 약 7,000명의 genome 정보를 가지고 있어 human의 genome 정보를 수집하는데 필요한 시간과 비용을 상당히 줄일 수 있습니다. 그리고 1000 Genome Project의 경우 7X coverage를 가지고 있어 정확도가 낮지만 Inova Genomes의 경우에는 최소 40X의 coverage로 높은 정확도를 가지고 있습니다. Kaviar나 EVS는 유럽인들에 대해 집중이 되어 있는 반면, Inova Genomes는 다양한 인종들에 대한 정보를 다수 포함하고 있습니다. 그 밖에도, 데이터의 수집에 대한 환자의 동의가 있어 지속적으로 follow up이 가능하여 분석 결과의 지속적인 업데이트가 가능하고, 2,100건 이상의 혈연 정보가 등록이 되어있어 trio 분석이 가능하여 가계도 내 유전적 질병을 파악하거나 분석하는데 용이하다는 뛰어난 장점을 가지고 있으며, Inova Genomes 에 있는 데이터를 이용하여 cohort를 마음껏 구성하여 비교분석도 가능합니다.
점점 더 저렴해지고 있는 시퀀싱 비용으로 규칙 없이 시퀀싱 데이터만 빠르게 생산되는 현재 시대에 공개되어 있는 데이터는 많은데 비해 자세한 정보가 없어 활용하기 힘든 의미 없는 데이터들뿐인 요즘. 특히나 다양한 케이스의 trio 데이터를 찾기는 더더욱 힘드셨을 거라고 생각됩니다. Inova Genomes에서는 지금 우리가 겪고 있는 고민들을 해결해 줄 수 있도록 데이터 정보에 대한 체계화 및 데이터의 계속적인 업데이트, 다양한 trio 데이터셋의 제공으로 human 분야의 유전체 연구에 날개를 달아드릴 것입니다.


작성자 : Codes실 Consulting팀
서지혜 컨설턴트

Posted by 人Co

2016/09/07 10:42 2016/09/07 10:42
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/219

A Superior Solution for Microbial Genomics - 5



일반 미생물에서부터 난배양성 미생물들까지 모두 확인할 수 있는 방법으로 샘플을 자연상태에서 직접 채취하여 시퀀싱 하는 방법을 metagenome이라고 합니다. NGS가 발전하면서 간단하게 샘플의 16s rRNA를 추출 후 시퀀싱을 하여 해당 샘플내에 존재하는 미생물의 종류와 존재 비율을 알 수 있습니다.
CLC Microbial Genomics Module은 16s rRNA 데이터베이스를 다운로드 하는 것부터 OTU clustering, alpha/beta diversity, PERMANOVA 분석까지 가능하게 해주며 미리 구성되어져 있는 워크플로우를 이용해 시퀀싱 raw data를 넣어주는 것만으로 분석이 완료가 됩니다.

지금부터 보여드릴 데이터는 용의자의 신발 두 켤레에서 나온 흙과 범행현장이라고 예측되는 곳의 토양 샘플의 16s rRNA를 시퀀싱하여 metagenome 분석을 응용한 것입니다. 시퀀싱 데이터를 모듈에 내장되어 있는 'Data QC and OTU Clustering'이라는 워크플로우에 넣어주면 trimming부터 OTU clustering까지 자동으로 진행되게 됩니다.



OTU clustering을 위한 워크플로우



이 워크플로우의 분석 결과로 data trimming report와 OTU clustering 결과를 볼 수 있는데 이 결과는 sunburst chart나 bar chart로 제공됩니다. 각 샘플별 clustering 결과에 metadata를 추가하여 특정 그룹으로 묶어 그룹간의 비교가 가능합니다.




그룹간의 OTU clustering bar chart

이후 OTU clustering 결과를 가지고 데이터의 taxonomy가 충분히 맵핑 되었는지 확인하기 위해 alpha diversity 분석을 수행하고, 샘플간 혹은 그룹간의 유사도를 보기 위해 beta diversity를 수행하게 됩니다. 그리고 MUSCLE 알고리즘을 이용한 alignment를 진행하고 phylogeny tree를 그려서 각 시퀀스간의 연관성을 확인합니다.



 

Diversity 확인 및 phylogeny tree 분석을 위한 워크플로우



두번째 워크플로우 분석 결과중 하나인 beta diversity의 결과를 함께 봅시다. Metadata를 이용하여 그룹을 지어주면 같은 그룹끼리 같은 색상으로 바뀌게 되며 그룹간 샘플간의 비교분석이 가능합니다. 아래의 그림에서 파란색 동그라미와 노란색 동그라미는 각각 다른 그룹을 의미하지만 유사도의 거리를 따졌을 경우 비슷한 것을 확인 할 수 있습니다 (일치라도 해도 될 정도로 유사함). 따라서 파란색과 노란색은 같은 토양 샘플이라고 잠재적 결정을 내릴 수 있으며, 용의자는 A 부츠를 신고 1번 site에 간 적이 있었다고 결론을 지을 수가 있겠습니다.




Beta diversity 분석 결과



1
6s rRNA를 이용한 metagenome 분석은 이러한 범인을 찾는데에 응용하는 것 외에도 특정 질병이 잘 걸리는 장내 환경을 조사해볼 수도 있고, 특정 작물이 잘 자라거나 특별히 잘 자라지 않는 토양에서의 미생물 분포를 알아볼 때도 사용할 수 있습니다.

CLC Microbial Genomics Module을 이용하여 우리눈에 보이지 않는 미생물들의 구성과 그 microbial community의 역할 및 특징들을 알아보고 싶으시면 지금 바로 trial 해보세요!


 <  이전화 보기  >

(문의) Consulting팀 (대표전화 : 031-278-0061, 이메일 : consulting@insilicogen.com)

Posted by 人Co

2016/08/30 09:55 2016/08/30 09:55
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/215

A Superior Solution for Microbial Genomics - 4



PacBio 플랫폼을 이용한 whole genome sequencing 데이터를 가지고 CLC Genome Finishing Module을 이용해서 고급단계의 de-novo assembly가 가능합니다. 현재 다양한 시퀀싱 장비들이 출시되어있지만 가장 긴 read 결과를 자랑하는 PacBio의 raw data(H5 포맷)의 경우에는 기존의 CLC Genomics Workbench만으로 분석이 불가능한 포맷이며 기존 장비에서 생산되는 데이터의 포맷들과는 다른 특징들을 가지고 있어서 PacBio 시퀀싱 결과를 다루기 위한 또 다른 분석툴이 필요하게 되었습니다.


CLC Genomics Finishing Module Workflow



GFM_tech_note.pdf

CLC Genomics Finishing Module Workflow 자세히 보기




PacBio 장비의 데이터는 길이가 긴 장점이 있지만 데이터의 에러율이 타 플랫폼에 비해 많이 높습니다. 이러한 점을 보완하기 위하여 CLC Genome Finishing Module에는 error correction 분석 툴이 있으며 이를 이용하여 보정된 서열들을 가지고 de-novo assembly를 수행하게 됩니다. 이렇게 만들어진 contig들은 reference가 있는 경우 이를 기준으로 alignment가 가능하고(reference가 없어도 alignment가능) alignment 결과에서 오버랩 되는 부분들을 직접 보고 두 개의 contig 매뉴얼하게 연결할 수 있습니다. 따라서 직접 연구자들이 눈으로 보고 contig의 개수를 줄이면서 유전체 서열의 finishing 작업을 수행할 수 있습니다.


Contig Joining 



De-novo assembly를 진행 후 contig 분석을 통해서 low coverage 또는 broken pair 영역 또는 gap 부분에 대한 추가적인 확인이 필요할 경우가 생깁니다. 보통 해당 부분을 증폭하여 re-sequencing을 진행하는 절차를 진행하는데, 이때 필요한 primer design 툴도 함께 제공하고 있습니다. 해당 영역에 새로운 sequence read가 추가되면 다시 처음부터 분석을 해야할까요? 그렇지 않습니다. CLC Genome Finishing Module은 기존의 assembly데이터에 새로운 sequence read를 특정한 contig에만 다시 맵핑하여 필요 영역을 채워나갈 수 있습니다.


Create Amplicon Tool을 사용하여 amplify할 부분을 확인

기존 PacBio 시퀀싱 데이터의 분석 결과에 대해서 만족스럽지 못하셨다면 CLC Genome Finishing Module을 한 번 이용해보는 것은 어떨까요? 당사로 연락주시면 2주간의 trial 라이선스를 제공해 드립니다. 단, CLC Genome Finishing Module은 CLC Genomics Workbench를 기반으로 한 모듈 이라는 점 명심해주세요.

 <  이전화 보기 |  다음화 보기 >

(문의) Consulting팀 (대표전화 : 031-278-0061, 이메일 : consulting@insilicogen.com)

Posted by 人Co

2016/06/02 07:48 2016/06/02 07:48
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/214

A Superior Solution for Microbial Genomics - 3

우리 몸을 구성하는 세포의 반 이상이 미생물 군집들로 차지하고 있습니다. 따라서 미생물의 분류학적, 유전적 기질은 사람, 동물 그리고 식물의 건강과 밀접한 관계를 가지고 있습니다.

특히 아직은 미생물의 유전적 기능 구성에 대한 정보가 구축되기에 어려움이 있고, 현재 metagenomics 분석 도구들도 기능적 구성이나 샘플간 변화 등을 정확하게 예측하기 위해 노력하고 있습니다. [Lindgreen et al. 2015].

만약 metagenome data를 de novo assemble 할 수 있고, 신뢰할 수 있는 기능 예측 결과를 통해 통계적으로 유의하게 변화된 것을 밝히는 분석도구가 있으면 어떨까요? 이러한 분석 도구가 NGS 데이터의 분석 표준이 되고 미생물 분석을 위해 최적화된다면 연구자분들에게 굉장한 도움을 줄 수 있을 것입니다.

미생물의 metagenomics 분석을 위한 플러그인인 CLC Microbial Genomics Module의 기능과 성능을 확인해 보세요.


결과 정확도

Figure 1. Metagenome 내 높은 정확도의 유전자 기능 예측 및 추적

2016년 1월에 Nature Scientific Reports에 14개의 다른 whole metagenome 분석 도구의 평가 결과에 대해 개재했습니다. 공개된 테스트 데이터를 이용해서metagenome의 기능적 분석이 가능한 5개를 선별하여 CLC Microbial Genomics Module과 비교했습니다. CLC Genomics Workbench에서 제공된 edge 테스트를 이용하여 통계적 분석을 진행하였고, photosynthesis, nitrogen fixation, pathogenesis에 대하여 분석을 진행하였습니다. (*는 통계학적으로 유의한, 정확한 변화를 일관적으로 예측하는 도구를 가리킵니다.)

Metagenomic 데이터를 바탕으로 미생물 군집에서 유전자 기능을 찾는 것은 어렵습니다. 더욱이 다른 metagenome 샘플간의 기능적 성질의 변화를 정확하게 측정하는 것은 더 어렵습니다. QIAGEN 솔루션은 미생물 유전체 분석에서 기능적인 차이를 정확히 찾고 정량화 할 수 있습니다. 또한 샘플간의 통계적으로 유의한 차이를 비교할 수 있도록 해줍니다.

여러 샘플의 비교는 샘플간의 기능적 변화를 찾고, 유사하거나 다른 기능적 요소를 분석하는데 쓰입니다.

Figure 2: 미생물 샘플들 전반에 걸친 기능적 비교

Metagenome에서 기능적 변화를 찾는 알고리즘은 많이 알려져 있지 않고, 기준이 되는 우수한 모델의 데이터셋이 없기 때문에 어려운 일입니다. 이런 어려움을 극복하기 위해 해당 연구결과에서는 기능을 파악하고 있는 두 합성 미생물 군집으로부터 각각 세개의 데이터셋(A1, A2, A3, B1, B2, B3)들을 만들었습니다.

Figure 2에서 보이는 것과 같이, CLC Microbial Genomics Module은 예측된 기능적 요소들의 비율을 바탕으로 두 개의 군집을 구분 할 수 있습니다.


Metagenome assembly 품질

새로운 Meatgenome assembler에서는 고품질의 어셈블리 결과를 생성하고 유전자 기능을 확인할 수 있습니다.

아래의 Table에서 CLC Microbial Module의 metagenome assembler와 다른 툴에서 misassembly, INDEL, mismatch error 등 다양한 지표들에서 어떤 차이가 나는지 비교해 줍니다.

Table 1 : Metagenome assembly의 품질 

QIAGEN metagenome assembler는 더욱 정확한 annotation을 가능하게 합니다. 데이터셋의 실제 길이는 209,845,413 base입니다.

 

실행 시간과 자원 효율성 계산

샘플의 크기가 크거나 데이터의 양이 많을때는 분석 실행시간과 요구되는 리소스가 매우 중요합니다.

테스트 데이터를 가지고 CLC Microbial Genomics Module의 어셈블러와 다른 어셈블러를 비교하였을 경우 분석 시간이 더 짧고 효과적이게 리소스를 이용하는 것을 확인하였습니다.

Figure 3. 최고의 metagenome assembly 분석도구


다른 metagenome 어셈블러들과 분석 시간과 리소스 사용면에서 비교하였을 때 우수한 결과를 보였습니다. (*MegaHit는 분석시간을 늘리면서 컴퓨터 메모리 소비를 줄이고 있습니다.)

 
분석에 소요하는 시간 축소


CLC Genomics Workbench 내의 workflow라는 기능을 이용하면 분석에 소요되는 시간과 노력을 크게 줄일 수 있습니다. 한번에 여러개의 데이터를 넣어줄 수도 있어 분석에 소요되는 시간과 동력을 절감시켜 줍니다.

Figure 4. 효율적인 workflow 기능


 <  이전화 보기 다음화 보기 >

(문의) Consulting팀 (대표전화 : 031-278-0061, 이메일 : consulting@insilicogen.com)

Posted by 人Co

2016/05/25 17:03 2016/05/25 17:03
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/213

A Superior Solution for Microbial Genomics - 2


 
미생물의 유전체 정보를 알고 있다면 그 미생물을 어떻게 활용할 수 있을지 혹은 다른 strain 및 특징은 무엇인지 쉽게 확인 할 수 있습니다.
 
PacBio라는 NGS 플랫폼의 개발로 미생물의 de-novo 유전체 분석이 이전보다 더 활발해졌지만 기존에 활용하던 NGS 장비의 포맷과는 전혀 다른 raw 데이터 포맷(H5)을 지원하기 때문에 연구자들이 직접 분석하기 어려웠던 부분을 CLC Genome Finishing Module에서 수행할 수 있습니다.

Genome finishing에 있어서 short read들 만으로 contig 연결이 어려웠던 부분에 PacBio 데이터를 reference로 삼아 align이 가능하며, raw 데이터 수준의 PacBio 데이터의 error correction과 de novo assembly 기능이 추가되어 더욱 효율적으로 미생물 유전체 서열을 완성할 수 있습니다.

CLC Genome Finishing Module을 활용한 PacBio raw data의 error correction과의 de novo assembly의 성능 비교 테스트 결과는 아래와 같습니다.



HGAP과의 벤치마킹 자료를 바탕으로 CLC Genome Finishing Module은 laptop 환경에도 불구하고 running time과 메모리 활용이 훨씬 적은 것을 알 수 있습니다. 또한 모듈내에 함께 제공되는 워크플로우를 통해 더욱 연구자들이 쉽고 빠르게 분석할 수 있는 환경을 제공하고 있습니다.
 
현재 가지고 계신 데이터가 있으시다면, 한번 try 해보세요!


(문의) Consulting팀 (대표전화 : 031-278-0061, 이메일 : consulting@insilicogen.com)

Posted by 人Co

2016/05/18 15:35 2016/05/18 15:35
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/211

A Superior Solution for Microbial Genomics - 1


미생물은 말 그대로 굉장히 작은 생물들이지만 환경과 생체에 미치는 영향력은 결코 작지 않으며, 미생물이 이 지구상에서 차지하는 비율 혹은 인체에서 차지하는 비율은 전체의 50%가 넘습니다. 다양한 환경에서 그 환경에 맞는 특정 미생물들이 살고 있고 이러한 미생물의 유전학적인 분석은 특정 유용 물질의 대량생산 하는 새로운 기술로서 개발하거나, 환경이나 질병 등에 대한 분석에 활용할 수 있습니다. 현재 다양한 NGS 플랫폼이 발달하면서 타 생물체보다 간단한 유전자 구조를 가지고 있는 미생물은 비교적 생물정보 분석도 용이하여, 전체 유전체 서열과 기능을 밝히거나 다양한 환경적 시료에서의 군집 분석을 많이 수행하고 있습니다.

1. Whole Genome 분석 솔루션



새로운 유전체의 서열을 조립하는 de novo assembly는 굉장히 복잡하고 어려운 일 중에 하나입니다. 하지만 PacBio 시퀀싱 플랫폼이 현재 굉장한 길이의 서열을 생산하면서 미생물 유전체 연구에 많이 활용되고 있습니다. Whole Genome 분석 솔루션은 다양한 NGS 플랫폼의 데이터의 GUI 형태의 de novo assembly 결과로부터 PacBio 데이터를 통한 scaffold 구축, 매뉴얼 gap filling 작업을 통한 미생물 유전체 서열을 확보할 수 있으며 ORF 예측 및 해당 서열의 blast, GO ontology 분석까지 가능하도록 패키지화 하였습니다.


2. Metagenome 분석 솔루션

미생물 군집을 분석하기 위해서는 16s rRNA 서열을 시퀀싱하거나 whole metagenome을 시퀀싱하여 진행합니다. Metagenome 분석을 위한 public tool들도 존재하지만 커맨드라인 기반으로 진행되기 때문에 일반 생물학자들이 사용하는데는 어려움이 많습니다. Metagenome 분석 솔루션은 NGS 플랫폼으로 시퀀싱한 데이터를 쉽게 분석할 수 있도록 미리 세팅되어진 워크플로우가 존재하여 OTU-clustering 및 diversity 분석 결과를 얻을 수 있습니다. 뿐만 아니라 whole metagenome 분석을 지원하여 de-novo assembly를 통한 contig 서열을 바탕으로 CDS와 gene을 예측하고 GO term 맵핑이나 BLAST를 수행하여 예측된 유전자 기능을 파악할 수 있습니다.


다음화 보기 >

(문의) Consulting팀 (대표전화 : 031-278-0061, 이메일 : consulting@insilicogen.com)

Posted by 人Co

2016/05/11 19:43 2016/05/11 19:43
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/209


Cancer Research의 자동화를 이룰 수 있는 막강한 툴과 데이터베이스의 콜라보레이션!

지금부터 특별한 프로모션이 진행됩니다.
Cancer에 최적화된 분석 프로그램인 CLC Cancer Research Workbench와 Ingenuity만의 큐레이션된 지식기반 DB를 토대로 하는 분석도구인 Ingenuity Variant Analysis 패키지를 저렴한 가격으로 만나볼 수 있습니다.

자세히 보기 : http://www.insilicogen.com/wiki/QIAGEN_Promotion
제품 문의 : marketing@insilicogen.com

2014년 12월 26일까지 한정판매를 하오니 많은 관심 부탁드립니다.


Posted by 人Co

2014/11/24 19:37 2014/11/24 19:37
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/168

지난 11일, CLC bio사에서는 Drug discovery를 위한 새로운 솔루션을 릴리즈 하였습니다. 그 이름은 바로 "CLC Drug Discovery Workbench" 입니다. 기존의 Workbench들은 NGS를 비롯한 시퀀싱 데이터의 분석을 촛점으로하여 계속적으로 업그레이드가 되고 있지만, 이전 Molegro사의 합병을 통해 Molegro virtual docker라는 솔루션을 리뉴얼하여 새로운 타입의 Workbench로서 출시 하였습니다.


CLC Drug Discovery Workbench는 이름 그대로 새로운 약물 개발을 위한 스크리닝 도구로서 활용할 수 있습니다. 타겟 단백질과 리간드의 결합 모델을 분석함으로서 interaction 및 docking 분석을 수행하여 단백질의 3D 구조를 확인하고 기존 Workbench의 protein 서열 분석 툴도 포함되어 있어 binding되는 서열 구조도 함께 확인할 수 있다고 합니다.

그럼 CLC Drug Discovery Workbench로 어떻게 분석되는지 살펴 볼까요?













또한 CLC bio는 "CLC Cancer Research Workbench"라는 새로운 Workbench도 곧 출시할 예정입니다.



CLC Cancer Research Workbench는 암 연구에 포커싱된 informatics 솔루션으로 NGS를 기반으로 한 amplicon, exom, whole genome sequencing 데이터를 이용하여 체세포 돌연변이 및 유전적인 질환과 약물반응, 또는 새로운 oncogene 등을 분석할 수 있으며, 돌연변이 관련 reference database를 이용하여 직접 분석한 돌연변이 데이터들과 비교 분석이 가능하도록 설계되었습니다.



그리고 일반 생물학자들도 쉽게 분석할 수 있도록 GUI 형태의 인터페이스를 제공하므로 암과 관련한 모든 연구자분들이 보편적으로 사용할 수 있는 솔루션으로서 자리매김 할 수 있을 것이라 생각됩니다.



올 4월에 릴리즈 될 예정이니 많은 관심 부탁드리며, 구체적인 기능 등은 공식 릴리즈 후에 소식 전해드리도록 하겠습니다.

그 외 생물정보 소프트웨어에 대한 문의사항도 언제나 (주)인실리코젠 마케팅팀(marketing@insilicogen.com)으로 연락주십시오.

감사합니다.









작성자 : Codes사업부 Consulting팀

김경윤 팀장


Posted by 人Co

2014/02/21 16:43 2014/02/21 16:43
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/147

2013 NGS market survey!

CLC bio사에서 지난 1월에 2013년도 NGS market survey 결과를 발표하였습니다.
NGS 시장 동향을 파악하는데 유용한 자료로 함께 공유하고자 소개해드립니다.
총 231명을 대상으로 NGS 시장조사를 실시한 결과입니다.



- Response rate: 미국이 23.4%로 가장 많은 비중을 차지하고 있습니다.
- Organization type : 2012년도와 비교한 결과 Academic organization은 7.5% 감소, Governmental은 37.5% 증가, Industry는 25.6% 증가하였습니다.


주로 여떤 연구를 수행하는가?
 


Primary application focus
- Basic research : 25.5% (가장 많은 비율을 차지)
- Microbial research : 18.6%
- Bioinformatics : 17.7%

응답자의 86%가 NGS 분석을 수행하고 있으며, 이는 2012년도(73%)보다 증가하였습니다.

2011년도(57%) -> 2012년도(73%) -> 2013년도(86%)


Illumina continues dominance


Illumina의 HiSeq 장비가 가장 많은 부분을 차지하고 있으며, Life Tech의 Ion Torrent PGM 장비가 작년 6위에서 3위로 상승하였습니다.


In-house NGS instruments


각 기관마다 NGS 장비를 얼마나 보유하고 있는지에 대한 통계치를 보여주고 있습니다. 기관의 27.9%가 NGS 장비를 더 구입할 계획을 가지고 있다고 합니다.


Preferred open source tool


UCSC Genome Browser가 여전히 1위를 차지하고 있으며, SAMtools 또한 많이 사용되고 있습니다. 대부분의 open source tool이 증가 추세를 보이고 있음을 확인할 수 있습니다.


Primary application focus


RNA-Seq Expression은 20.1%의 많은 증가율을 보이며 1위를 차지하였습니다.(작년은 whole genome sequencing) De novo sequencing은 작년에 비해 16.7% 증가하여 2위를 차지하였습니다.

해당 내용은 아래의 첨부파일을 통해 다시 보실 수 있습니다.



작성자 : 브랜드마케팅실 Marketing팀
컨설턴트 송하나

Posted by 人Co

2014/02/21 16:26 2014/02/21 16:26
Response
No Trackback , No Comment
RSS :
http://www.insilicogen.com/blog/rss/response/146



« Previous : 1 : 2 : 3 : 4 : Next »